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Abstract

We developed an individual-based model of Rabbit Viral Hemorrhagic Disease (RVHD) for European wild rabbits
(Oryctolagus cuniculus L.), representing up to 1000 rabbits in four hectares. Model output for productivity and
recruitment matched published values. The disease was density-dependent and virulence affected outcome. Strains
that caused death after several days produced greater overall mortality than strains in which rabbits either died or
recovered very quickly. Disease effect also depended on time of year. We also elaborated a larger scale model
representing 25 km2 and 100,000+ rabbits, split into a number of grid-squares. This was a more traditional model
that did not represent individual rabbits, but employed a system of dynamic equations for each grid-square. Disease
spread depended on probability of transmission between neighboring grid-squares. Potential recovery from a major
population crash caused by the disease relied on disease virulence and frequency of recurrence. The model’s
dependence on probability of disease transmission between grid-squares suggests the way that the model represents
the spatial distribution of the population affects simulation. Although data on RVHD in Europe are lacking, our
models provide a basis for describing the disease in realistic detail and for assessing influence of various social and
spatial factors on spread. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Rabbit Viral Hemorrhagic Disease (RVHD)
was first detected in China in 1984 (Liu et al.,
1984; Rodák et al., 1990a) in domestic rabbits

(Oryctolagus cuniculus L.). The virus, a calicivirus,
is fatal in the early stages of an epizootic (Smid et
al., 1989, 1991; Ohlinger et al., 1990; Parra and
Prieto, 1990). It causes lesions including hemor-
rhage, gross swellings in the major organs espe-
cially liver and lungs, and to a lesser extent in the
kidneys and spleen. Aerosol droplet infection is
probably the transmission method, with incuba-
tion time of around 20–48 h, after which death
may follow rapidly (Xu and Chen, 1989; Nowtny
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et al., 1993). In some cases, the ante-mortem
morbidity period can be up to 2 weeks.

RVHD has spread rapidly since 1984, appearing
in former Czechoslovakia in 1987 (Smid et al.,
1991) and spreading to Germany, Poland, Italy,
France and Spain a year later (Argüello et al.,
1988; Smid et al., 1991). It has been reported in
Austria (Kolbl et al., 1990), Belgium (Peeters et al.,
1990), UK (Fuller et al., 1993; Chasey, 1994), and
Mexico (Gregg and House, 1989). In most coun-
tries, the impact of the disease has been mainly
upon domestic and commercial rabbits, but
RVHD has also had a serious effect on free-living
populations. In southern Spain, for example, 60+
% of the wild rabbit population died in the initial
epizootic (Blanco and Villafuerte, 1993; Villafuerte
et al., 1994; Gortazar, 1997; Fa et al., 1999).

Although studies on RVHD epizootiology in
Australian rabbit populations are now emerging
(Bowen and Read, 1999; Pech and Hood, 1999;
Saunders et al., 1999; Pech et al., 1994), the role of
RVHD in rabbit population crashes in Europe is
still unclear. While gathering information on the
impact of the disease and its likely effect in the
future is of prime importance, a complementary
approach is the application of theoretical epizooti-
ology (Anderson and May, 1979a,b). Epizootio-
logical models on myxomatosis and rabbits have
increased understanding of the co-evolution of the
virus and its host and of the role of disease in
rabbit population dynamics (May, 1985; Dwyer et
al., 1990). Krebs (1986) considers the rabbit/myxo-
matosis system to be the most widely quoted
example of host-disease co-evolution in the litera-
ture. This is largely due to May (1985). The general
epizootiological model of Anderson and May
(1979a) can be expressed as:

dS
dt

=rN−�SI−mS, (1)

dI
dt

=�SI− (m+�+�)I, (2)

dR
dt

=�I−mR, (3)

where S, I and R represent the number of suscep-
tible, infected and recovered animals; N is the total
number of animals; r is the intrinsic rate of in-

crease of the population; m is the natural mortality
rate; � is the rate of transmission of disease; � is
the additional mortality due to disease; and � is the
rate of recovery from disease.

This model may also be expressed in discrete
time, thus:

St+1=St+ [rNt−�StIt−mSt ]�t, (4)

It+1=It+ [�StIt− (m+�+�)It ]�t, (5)

Rt=1=Rt+ [�It−mRt ]�t, (6)

where �t=1 is the time step, St is the number of
susceptible rabbits at time t, St+1 is the number of
susceptible rabbits at time t+1, and so on.

Conventional approaches to modeling rabbit
population dynamics have encountered difficulties
in the estimation of population parameters. Most
rabbit models used to date have not specifically
combined accurate representation of both popula-
tion dynamics and disease. Models of disease tend
to have rather simple population dynamics (Dwyer
et al., 1990), whilst population models do not have
detailed simulations of disease (Smith and Trout,
1994). In an attempt to simulate the impact of
RVHD on Australian rabbit populations, Barlow
and Kean (1998) developed an age-structured,
deterministic model, which used demographic data
from studies in New Zealand and Australia and
epizootiological data from Spain. This model in-
cluded differences in productivity between age
classes, climatic variation, predation, disease viru-
lence and transmissibility, and followed on from
previous studies of disease in rabbits (Barlow,
1993a) and other animals (Barlow, 1993b). How-
ever, there is no explicit spatial representation, and
like Smith and Trout (1994), the model is based on
Leslie matrices. Although these models produced a
good fit to the wild rabbit population data used to
determine the population parameters, they are not
able to represent processes of spatial movement,
local interactions, and social behavior that may be
critical to the dynamics of a disease in a popula-
tion.

Many of the difficulties and limitations of Leslie
matrix models or population-level models in ade-
quately representing a population composed of a
number of discrete classes with widely differing
responses to variables such as infection, movement
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etc. can be addressed by using individual-based
models, or IBMs (De Angelis and Gross, 1992).
These allow the modeler to have much more
flexibility in representing population processes,
by tracking all the individuals in a population
and deriving births, deaths and other processes
directly from the properties of the individuals.
In fact the IBM can be considered as the exten-
sion of a population projection matrix (as in the
Leslie matrix), such that each individual in the
population represents an age/sex class of its own
(Judson, 1994).

IBMs operate by following a number of sim-
ple sets of rules, and new processes can usually
be added into the original model without mak-
ing it any more difficult to perform model simu-
lations. This cannot be said of analytical
models; the attractive property of analytic
tractability is quickly lost with increasing model
complexity. Each process in an IBM can be
contained within one set of rules that govern the
responses of individuals within any given situa-
tion. The population level processes, such as
birth and death rates, can be obtained simply by
summing over all the individuals represented. In
this way, it is theoretically possible to combine
a realistic population model with a realistic dis-
ease model. Theoretically, there is no limit to
the number of processes which can be included,
although it is good model design to include only
processes and factors that are essential to de-
scribe the system. However, the number of at-
tributes that an individual can have in an IBM
greatly exceeds that of conventional models. In
addition, IBMs are oriented towards the pro-
cesses modeled, rather than the classes involved.
The program can thus be split into routines that
cover one process, such as births, as opposed to
having a number of distinct equations for each
age/sex class or disease status, each containing a
number of different processes. This adds greatly
to the ease of understanding and implementing
the model system.

The IBM can also be used as a first step
towards a conventional analytical model. It al-
lows detailed representation of spatial configura-
tions and movements in space (Caswell and
John, 1992), so that the effects can be simu-

lated. Study of the results may reveal that sim-
pler analytic models can represent the simulated
dynamics with reasonable accuracy.

In this paper, we provide an exploratory ap-
proach to modeling RVHD. We concentrate on
European populations of wild rabbits, and thus
our models’ applicability to Australasian popu-
lations may be limited. The discussion of the
results will focus on the applicability and valid-
ity of the various techniques used, rather than
on theoretical insights gained into the disease.
There are several reasons for this. Firstly, there
are very few empirical data on the epizootiology
of RVHD in wild rabbit populations in Europe
at present, which makes any theoretical treat-
ment at this stage somewhat speculative. Sec-
ondly, IBMs such as that reported here, have
rarely been applied to epizootiology (although
see David et al., 1982).

We develop the paper in two separate phases:
(1) an individual-based model of RVHD within
a small rabbit population will be described. The
role of this model will be to focus on mortality,
transmissibility, timing of epizootics, and effects
of population density. In particular, spatial as-
pects of disease spread and transmission will be
considered. This model, known as the Spatial
Model, provides a realistic description of the
population dynamics of a small rabbit popula-
tion; (2) the next stage is to develop a large-
scale model, which represents population states
rather than individual rabbits. This model will
be derived directly by converting the processes
underlying the Spatial Model to the metapopu-
lation level. The role of this model, the Re-
gional Model, will be to look at the recurrence
of disease over many years and the spread of
the disease over a wide area, and to attempt to
identify the long-term population implications of
the disease.

2. Results

2.1. The Spatial Model: de�elopment

2.1.1. General
This is a spatially explicit mixed stochastic–
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deterministic, individual-based model, which rep-
resents a population of up to 1000 rabbits in an
area of 4 hectares. The rabbits move around a
number of 10×10 m grid-squares, interact with
other rabbits, and reproduce and die according to
a number of simple rules. Disease can be intro-
duced to the system at any point in the annual
cycle. The model has a number of user-defined
parameters, which control population processes,

such as birth and death rates, and the disease
parameters, such as virulence, probability of
transmission, and time of outbreaks. The rabbits
belong to one of five mutually exclusive age/sex
classes (Adult Male, Adult Female, Juvenile Male,
Juvenile Female, Infant). Rabbits are classed as
infants from birth to age 21 days (Webb, 1993),
which corresponds to the period in which they are
confined to the natal nest. Sex is assigned to
rabbits when they become juveniles, in a ratio,
which is supplied by the user (JSR, Table 1).
Rabbits are juveniles from 22 to 200 days: during
this period they cannot breed. Although rabbits
are in fact able to breed from as early as 130 days
of age in Australia, and can breed in their first
season (Gilbert et al., 1987), this is less common
in Europe, and breeding success is limited until
after 190 days (Smith and Trout, 1994). Juveniles
were therefore not allowed to breed in this model;
all young born are thus the offspring of any
adults present at the start of the annual cycle.

After the population has been prepared the
model proceeds through 365 iterations, each rep-
resenting 1 day, and giving a model lifetime of 1
year. The model can be started at any month, and
the initial composition of the population can be
altered, as can the distribution of the rabbits
within the grid and the carrying capacity of the
landscape. In each daily time step of the model,
the various processes, such as Births, Deaths,
Movement and Disease, are performed on all
rabbits in turn, i.e. all rabbits move, then all
rabbits have a risk of mortality. Some of the
procedures, such as Dispersal and Births apply
only to specific age/sex classes.

Data for the population and disease parameters
were obtained from the literature. Estimates of
fecundity and survival were taken from Wheeler
and King (1985), Gilbert et al. (1987), Williams
and Moore (1989), Bell and Webb (1991), Gibb
(1993), Rogers et al. (1994) and Smith and Trout
(1994). Since accurate data on disease parameters
in wild populations were not available, accounts
of the disease in captive rabbits were used (Xu
and Chen, 1989; Nowtny et al., 1993) as well as
the partial data on the disease in wild rabbits in
Spain (Villafuerte et al., 1994). Full descriptions

Table 1
User-defined parameters for Spatial Model

Range

Initial population parameters
Initial population size 20–400

(no. of rabbits)
Initial proportion of Infants 0–1
Initial proportion of 0–1

Juveniles
0–1Juvenile sex ratio
0–1Adult sex ratio

Number of warrens 4, 8, 16, 24 or 36
Initial distribution of 0=uniform, 1=random

rabbits in warrens
Maximum number of 0=uniform (10),

1=random (5–15)rabbits per grid-square
Initial month of year 0 (January)–11 (December)
Number of iterations 30–365

Population dynamics parameters
Home range size, for each 0–5 (grid-squares from

home warren)A/S class
0–1Mortality rates, for each

A/S class
0–1Monthly probability of

pregnancy
Start and end dates of extra 0–300

mortality period
0–1Extra mortality rates, for

Adults and Juveniles

Disease parameters
Total number of infections 0–15
Probability of death at 0–1

stages 1–4 of disease
Probability of transmission 0–1

of disease
1–355Time of nth infection

Number of warrens in nth 1-Number of warrens
infection

1–15Number of infected rabbits
in each warren
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Table 2
Parameters for Regional Model

Range

Initial population parameters
Initial population size (no. 20–400

of rabbits)
Initial proportion of Infants 0–1
Initial proportion of 0–1

Juveniles
Juvenile sex ratio 0–1

0–1Adult sex ratio
0=uniform. 1=smallInitial distribution of rabbits

in grid-squares variation, 2= large variation
Uniform or Random,Carrying capacity of

grid-squares 500–5000 rabbits
Number of years 1–20

Population dynamics parameters
0–1Probability of emigration,

for JM and JF
Mortality rates, for each 0–1

A/S class
Monthly probability of 0–1

pregnancy
Fecundity 2–10

Disease parameters
0–15Total number of infections
0–1Probability of death at

stages 1–4 of disease
0–1Probability of transmission

of disease within
grid-square

Probability of transmission 0–1
of disease between
grid-squares

1–355Date and year of nth
infection

1–20Number and location of
grid-squares in nth
infection

Number of infected rabbits 1–500
in each warren

capacity or each warren can be assigned a carry-
ing capacity chosen randomly around a common
mean, but the carrying capacity for each warren
remains constant throughout the lifetime of the
model. Similarly, each of the 10×10 m grid-
squares can uniformly contain up to a maximum
of 10 rabbits, or can have a randomly assigned
capacity of between five and 15 rabbits. Each
rabbit has a ‘home’ warren around which it
moves. On each day, a rabbit will occupy one
grid-square, interacting only with rabbits also in
that grid-square. The rabbits move to a new
square each day, within a user-defined home
range of a number of squares about the home
warren. While rabbits tend to have a daily range
larger than 100 m2 (see Gibb, 1993; Kolb, 1994),
in any 1 day it is unlikely that a rabbit will
interact with all other rabbits in its own warren,
especially when the warren is overcrowded. With
the method used in this model, the rabbits will,
over time, interact with both the other members
of the warren, and rabbits from neighboring war-
rens. For the simulations used here, the home
ranges were as follows (based on Gibb, 1993):
Adult Males 25 squares (0.25 ha); Adult Females
9 squares (0.09 ha); Juvenile Males 49 squares
(0.49 ha), Juvenile Females 25 squares (0.25 ha),
and Infants 1 square (i.e. the home warren
square).

To allow for mixing between warrens, and to
account for the juvenile dispersal seen in wild
rabbits, Juvenile Males and Females are allowed
to disperse to other warrens. This is age-depen-
dent: males disperse from the age of 120 days,
females from 150 days; males also disperse much
more frequently than females (Dunsmore, 1974;
Parer, 1982; Webb et al., 1995). In this model,
dispersal is also density dependent; only rabbits
whose home warren contains more rabbits than
the mean for all warrens will disperse.

2.1.3. Reproduction
Reproduction simulates the 30-day pregnancy

of rabbits. Females become pregnant according to
a deterministic, month-specific probability and
then only if there is an adult male available to
interact with (i.e. in the same square). The female
will be pregnant for 30 days, and will then give

of the parameter values investigated are given in
Table 1 and Table 2. Full program source code
and documentation (for both models) can be ob-
tained from the authors on request.

2.1.2. Mo�ement and dispersal
Within the 4 ha area, a number of warrens

(4, 8, 16, 24 or 36) are placed in a regular pattern.
The warrens can all be assigned the same carrying
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birth to a litter of between two and seven infants
(mean litter size in rabbits in continental Europe
varies between 3.2 and 4.1, Rogers et al., 1994).
The size of the litter is random, but is also den-
sity-dependent. If the litter would take the fe-
male’s warren beyond its carrying capacity, the
litter will be density-dependent: as the warren’s
population approaches carrying capacity, so the
probability of pregnancy (for all females in that
warren) tends to zero.

As rabbits exhibit post-partum estrous, females
become available for mating immediately after
giving birth. Seasonality in breeding is user-
defined, by setting different probabilities of preg-
nancy for each month. In the model runs,
breeding occurs from December through June.
The length of the breeding season is dependent
upon climate (both temperature and rainfall) and
day length (Bell and Webb, 1991); in parts of
Australia, under favorable climatic conditions,
breeding can be virtually continuous (Gilbert et
al., 1987), while in northern Europe the breeding
season can be as short as 3 months (Bell and
Webb, 1991; Rogers et al., 1994). In Spain, breed-
ing season has been recorded as lasting from
November through to May or June, with a mean
duration of 210 days (Rogers et al., 1994).

2.1.4. Natural mortality
For the purposes of the model, all deaths due

to predation, starvation, senescence and diseases
other than RVHD are treated as natural mortal-
ity. To allow for variation in mortality rates with
season, a period of extra mortality can be defined
if necessary. This extra mortality period can be
used to simulate the effects of myxomatosis,
which normally occurs in late summer/autumn,
and which has differing effects on juveniles and
adults, as described below.

All rabbits undergo age and sex-specific mortal-
ity, which is expressed as probability of survival
over a given time period. The user-defined sur-
vival rates refer to annual survival for adults,
survival to 6 months for juveniles, and survival to
the 21-day nestling period for infants. The model
actually translates this into a number of survival
periods: thus adults face a probability of death
once a month, juveniles once 2 weeks, with infants

undergoing a daily survival probability. The sur-
vival probabilities for these time periods are
derived from the user-defined values as follows: if
p is the probability of survival over time t, such
that:

Nt+1=pNt, (7)

then q, the probability of survival over each of x
equal subdivisions of t can be derived as:

q=p1/x, (8)

where q�p. Survival to time t+x is thus:

Nt+x=qNt, (9)

and

Nt+1=qNt, qNt+x, qNt+2x, …, qN(t+1)−x. (10)

Although the daily probability of survival will
vary during these time periods, due to presence of
predators, climatic events etc. the survival proba-
bilities can be seen as the mean probability of
survival for that period. Rabbits that die are
removed from the model completely. The model
tracks deaths from natural causes, extra mortality
and disease separately. Natural mortality occurs
at the same rate irrespective of the disease status
of an individual.

2.1.5. Additional interactions and mortality
If a rabbit does not interact with another rabbit

for more than 10 days, it will move to another
warren. This is to avoid single rabbits occupying a
warren, and to ensure that rabbits will congregate
when at low density. As the mortality rate de-
scribed above is fixed throughout the lifetime of
the model, an additional period of mortality (but
not due to RVHD) can be specified. This can be
used to simulate a period of hunting, heavy non-
human predation, or to separate the effects of
myxomatosis from background mortality. For
this extra period of mortality, the user supplied a
start and end and mortality frequency (i.e. ‘x ’).
This extra mortality is then calculated in exactly
the same way as for normal mortality. As myxo-
matosis in Europe generally occurs in an annual
cycle, peaking in late summer/autumn (Bell and
Webb, 1991; Webb, 1993), this method was used
to represent the different mortality rates experi-
enced at different times of the year.
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2.1.6. Additional mortality due to disease
Disease can be introduced into the population

at any time of year, and at any point in the grid.
Up to 15 rabbits in any one warren can be
infected simultaneously, and more than one war-
ren can be infected at one time. Outbreaks can
occur on up to 15 separate days, at any time from
the start of the run until 10 days before the end.
For statistical purposes, outbreaks are only
treated separately if there are no infected rabbits
when infection is introduced.

Once a rabbit is infected, it is infectious until it
either recovers or dies. The rabbit faces some
probability of death on each day while it is in-
fected, the probability varying according to length
of time since infection. All rabbits survive 1 day,
which represents the incubation period. There-
after, there are four stages, each with its own
probability of death. These stages cover days
2, 3, 4–6 and 7–13 from infection. Any rabbit
that reaches 14 days from infection recovers. The
user sets the probability of death at each stage,
and all can vary from 0–1 inclusive (Xu and
Chen, 1989). Infection of rabbits occurs when
susceptible rabbits are in the same square as an
infected rabbit. The main method of transmission
has been demonstrated as direct contact with

infected rabbits (Xu and Chen, 1989), although
indirect transmission is possible. The user sets the
probability of transmission of the disease. Rabbits
less than 60 days old are not susceptible (Xu and
Chen, 1989; Rodák et al., 1990b), and once a
rabbit has recovered, it remains immune.

2.2. The Spatial Model: results

The population model provided a good approx-
imation of known rabbit population dynamics.
Fig. 1 shows the annual cycle of reproduction,
with breeding occurring from January through to
June, followed by a period of massive juvenile
mortality. This gives a relatively low level of
juvenile recruitment into the adult population the
following year. The figures for fecundity and re-
cruitment matched published values closely. In
Europe, the mean number of young produced per
female per year has been variously reported as
6.1–10.1 (Bell and Webb, 1991 for emergent
young in a UK study), 10–20 (Smith and Trout,
1994 for UK, live births) and 9.8–17.4 (Rogers et
al., 1994 for France, live births). The values pro-
duced by the model varied from 9.0–18.3 births
per female, which is clearly in the range reported.
Likewise, Bell and Webb (1991) reported values of
8.3–51.4% for recruitment of juveniles into the
adult population in a UK rabbit population, com-
pared to values of 3.5–42.0% produced by the
model.

Fig. 2 shows the effects of population density
and fecundity on population growth. Fast and
slow refer to the birth rate—with greater fecun-
dity, population growth is faster. Note the clear
density-dependent effect. This is not due to adult
density, but rather to the decreased fecundity
incurred when the total population approaches
the carrying capacity of the system. With a small
initial population, the full potential of births can
be achieved, giving a large juvenile population
from which recruitment is more successful. With a
larger initial population, the carrying capacity of
the system is reached with fewer births. The result
is decreased production (via for example, resorp-
tion of embryos which occurs at high densities)
leading to a smaller juvenile population which
after mortality leaves few individuals to recruitFig. 1. Normal population development in Spatial Model.
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Fig. 2. Density dependence of population growth in Spatial
Model.

regulation of population size in rabbits. The
model operates in the way that this mechanism
suggests, by reducing fecundity at high popula-
tion densities.

The model did not, however, allow for in-
creased mortality at a number of disease scenar-
ios to be investigated. Disease showed
density-dependent effects (Fig. 3b), with a much
larger decrease in population observed with larger
initial populations. This is due to the greater
number of susceptible rabbits available to be in-
fected in a larger population. The change in pop-
ulation was strongly correlated with the number
of rabbits infected (Fig. 3c), regardless of the type
of disease and initial population size.

An interesting feature was the effect of viru-
lence of the virus (in terms of both case mortality
and time to death). For this investigation, High
virulence was defined as producing a high case
mortality within the first 2 days, with animals
surviving longer than that having a high proba-
bility of recovery. Overall recovery from high
virulence infection was around 15%. Low viru-
lence followed the same time course as High
virulence, but with much lower case mortality in
the first 2 days. Overall recovery rate here was
around 30%.

Delayed mortality produced a high case mor-
tality, but with a much longer time to death and
probability of death remaining high for 2 weeks.
Recovery rate was around 15% in this case.
Mixed mortality produced some mortality in the
first 2 days, with a high mortality after 2 weeks,
recovery being around 10%. While both High and
Low virulence did on occasion produce a crash in
population, often they did not do so. Delayed
and Mixed virulence mortality, on the other
hand, always induced a population crash, and
produced a greater decrease in population than
either High or Low virulence (Fig. 4a). Fig. 4b
shows the effect of a Delayed virulence virus,
introduced early in the year, on an initial popula-
tion of 200 rabbits. Comparing this graph with
Fig. 1 shows the dramatically reduced popula-
tion, which is due to the mortality of adults early
in the year; this reduces the number of young
born and thus the potential for juveniles to be
recruited to the adult population of the following

into the adult population. When the period of
high juvenile mortality (normally due to the inci-
dence of myxomatosis) is explicitly modeled, as in
the runs marked Extra in Fig. 2, there is a slight
but not significant, increase in the population.
This is due to the lower background mortality of
juveniles which survive the extra mortality period,
thus having a higher chance of surviving to be-
come adults.

The rate of population growth is dependent
upon the mean number of births per adult female
(Fig. 3a). Whether the reduction in number of
births per female is due to lower fecundity or for
example, to increased competition for nest-sites
(Bell, 1983) because of overcrowding, the result is
the same—a lower rate of population increase.
Dwyer et al. (1990) did not include density-de-
pendence in their model, claiming there was a
lack of evidence for this in rabbits, as has also
been claimed by Gilbert et al. (1987) and Gibb
(1977). However, Krebs (1986) points out that
many studies have ignored the effect of social
behavior on population regulation, and suggests
that some self-regulation must exist in rabbits.
The phenomenon of resorption of fetuses in
crowded warrens (Thompson and Worden, 1956;
Lockley, 1964) provides a mechanism for natural
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year. Juvenile mortality occurs as normal in
summer/autumn.

The time of disease introduction was also
an important variable influencing the size of
population reduction due to disease (Fig. 4c).
This was due to the increased number of suscep-
tible rabbits available for infection, both because
of the larger population size later in the year,
and because of infants losing their immunity as
they mature, thus adding to the number of sus-

ceptibles. This has interesting consequences
when possible interactions between RVHD and
myxomatosis are considered. If RVHD occurs
later in the autumn, one might predict higher
overall mortality within a population. This is
due to the additive effects of myxomatosis (on
susceptible young of the year), and RVHD on
adults and juveniles recovered from myxomato-
sis since they would have lost their earlier kitten
immunity.

Fig. 3. (a) Effect of fecundity on population growth in Spatial Model; (b) density dependence of disease in Spatial Model; (c) effect
of disease on population growth in Spatial Model.
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Fig. 4. (a) Effect of virulence of disease in Spatial Model; (b) population development with disease in Spatial Model; (c) effect of
timing of disease in Spatial Model.

The potential for recovery in a disease-affected
population is shown in Fig. 5. This population
has been reduced by disease infection in Novem-
ber–December, from 250 rabbits in October to
around 50 rabbits in January. Disease is unlikely
to affect the population in the year following the
first outbreak, due both to the small population
size (Fig. 5a) and the low proportion of suscepti-
ble rabbits in the population (Fig. 5b). The popu-
lation does not increase greatly during the year,
which may be an effect of the relatively young age

structure, as most of the adults in the population
will be juveniles of the previous year.

2.3. The regional model: de�elopment

2.3.1. General
The Regional Model was developed from the

Spatial Model, to extend the scale to several
square kilometers, and several hundred thousand
rabbits. This model does not explicitly represent
individual rabbits but instead uses the principles
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of the Spatial Model to build up a more conven-
tional model, from which properties can be
derived in terms of dynamic equations, allowing a
more conventional approach. Much of the nota-
tion and variables remain the same, and the pro-
gram for the Regional Model was mainly derived
from that for the Spatial Model, and functions in
a similar manner.

The model represents an area of 25 km2, in a
10×10 grid of 0.25 km2 grid-squares. Each grid-

square can hold a maximum of 5000 rabbits,
although the carrying capacity of each square can
be set randomly at any value up to this maximum.
Population processes apply to each grid-square
independently; adult rabbits remain in 1 square,
while juveniles may disperse between squares at
certain times of the year. Each time step repre-
sents 1 week, and the model can run for up to 20
years. Most of the parameters are the same as
those used in the Spatial Model (Table 2).

2.3.2. Indi�idual representation
Individuals are not represented explicitly. In

each grid-square, a note is kept of the total num-
ber and number of susceptible, infected and re-
covered rabbits in each of the five mutually-
exclusive age–sex classes used in the Spatial
Model. The only difference in the age/sex classes
is that infants are recorded separately for each
weekly cohort. This is to allow for specific mortal-
ity rates to be applied to each cohort.

2.3.3. Dispersal
Dispersal occurs in the 1st week of August each

year, and is density independent and determinis-
tic. The proportion of infants eventually dispers-
ing is set by the user, males and females having
separate rates. For each grid-square the number
of dispersing juveniles is calculated, and divided
equally among the eight neighboring squares. For
each square it is assumed that an equal number of
juveniles immigrate, and rabbits from these
squares effectively only emigrate to other squares
inside the model area. The number of susceptible,
infected and recovered rabbits among the emi-
grants is proportional to the number of each of
these classes within the appropriate age/sex class.
Computational difficulties prevented a more real-
istic representation of emigration, as a number of
different cohorts of juveniles would have had to
be created to allow for age-related dispersion.

2.3.4. Reproduction
The number of births each month is calculated

from the probability of pregnancy for that month
times the number of adult females in the square
times the mean litter size, adjusted by a stochastic
element. The probability of pregnancy is density-

Fig. 5. (a) Recovery from disease in Spatial Model; (b) disease
status during recovery in Spatial Model.
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dependent so that the probability approaches
zero as the square’s population approaches its
carrying capacity. Once the number of births for
the month has been determined, the births are
split into 4 weekly cohorts, in the proportion
4:3:3:2. These cohorts are then ‘born’ at the ap-
propriate week of the month, only being in-
cluded in the number of infants once they have
been born. This allows each cohort to undergo
infant mortality separately.

2.3.5. Natural mortality
Natural mortality is calculated in a similar

way to that in the Spatial Model. The user sup-
plies probabilities of survival for each age/sex
class: survival to 3 weeks for infants, to 6
months for juveniles and survival over 1 year for
adults. Infant mortality is calculated separately
from the other age/sex class, and separately for
each weekly cohort. For the remaining age/sex
classes, mortality is calculated once a month, al-
though the deaths for 1 month are spread evenly
over the weeks of the month. The number of
deaths in each month is calculated as the user-
supplied, age/sex specific mortality rate times the
number of rabbits in the age/sex class, adjusted
by a stochastic element. The number of deaths
in each of the disease classes is proportional to
the total number of rabbits in that class for that
age/sex class. Natural mortality occurs at the
same rate irrespective of disease status.

2.3.6. Additional mortality due to disease
Outbreaks of the disease occur in much the

same way as in the Spatial Model. The disease
can be introduced in any grid-square, at any
time of year, in any year of the model run. Any
number of rabbits can be infected in the grid-
square where disease is introduced.

Infected rabbits either recover or die, with
user-defined probabilities: the sum of these two
probabilities cannot exceed 1, but can be less
than 1. In this latter case, rabbits that do not
recover or die remain infected until the next
time step. Two probabilities, TransProb and
TransSquareprob govern infection of rabbits.
These probabilities can be said to represent the
probability of interacting with infected rabbits in

the same square and in neighboring squares, re-
spectively.

2.4. The regional model: results

The Regional Model also shows the annual
population cycle seen in the Spatial Model. With
the default population parameters, the maximum
(adult) population achievable is around 200,000.
This population size is reached regardless of the
initial population size (Fig. 6a): the potential for
increase in population is density dependent (Fig.
6b). The actual size of the maximum population
which can be reached is dependent on the popu-
lation parameters, however (Fig. 6a). A higher
birth rate and low juvenile mortality allow a
larger maximum population size. Paradoxically,
very high juvenile mortality (80% as opposed to
70 or 60%) results in a larger population. When
the population is close to carrying capacity, pop-
ulation growth is restricted because there are
fewer births. With higher juvenile mortality there
are potentially more births, as the deaths of ju-
veniles bring the population below the carrying
capacity. More births mean a larger juvenile
population from which recruitment can occur,
which would compensate for the increased mor-
tality.

Three disease parameters were investigated:
between-squares probability of disease transmis-
sion; virulence of disease; and frequency of oc-
currence of the disease (Fig. 7). It can be seen
that occurrence of the disease over the 20 years
was greatest with Mixed virulence disease and
High between-squares probability of transmis-
sion occurring in a biennial cycle. Between-
squares probability of transmission had a greater
effect on occurrence of disease than either of the
other two parameters. Only when this probabil-
ity exceeded 0.4 (i.e. High) did a population
crash occur across the entire area (Fig. 8). In
the other cases, individual squares would crash
completely but the disease would not transmit
across the entire area. With Low between-
squares probability, a maximum of 18% of
squares would be infected in any 1 year, while
for Medium between-squares probability, the
maximum number of squares infected was 34%.
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Fig. 6. Population growth in Regional Model. (a) Population
size after 20 years. Note that irrespective of initial population
size, the final population depends on the population parame-
ters. (b) Density dependence of population growth. Fast and
Slow refer to rate of increase, High, Very High and Low refer
to juvenile mortality. The default values are: initial population
of 1000, Fast rate of increase, Low mortality.

marked effect on population growth, as can be
seen by comparison with the growth of popula-
tion in the absence of disease in Fig. 8, solid lines.

The Regional Model represents the population
in a number of grid-squares, each of which repre-
sents a discrete population, which has limited
interchange with its neighboring populations. The
only actual exchange of rabbits between neighbor-
ing squares is via emigrating juveniles. Thus the
between-squares probability of disease transmis-
sion represents the probability that the disease
will be transferred from 1 square to another.
Whether this occurs by infected rabbits crossing
over into another square or by an agent or vector
is immaterial for the working of the model. Exter-
nal agents (e.g. other animals, vehicles, etc.) are
reported to carry the virus, and rabbits can con-
tract the disease from these sources (Chasey,
1994). The highest value used for the between-
squares probability was 0.4. In the real world, this
would require either significant movement of rab-
bits between populations, or a large volume of
external traffic carrying the virus. It is possible
that these circumstances could occur. However,

Fig. 7. Effect of disease type on number of infections in
Regional Model. The disease parameters vary in probability of
transmission of disease between squares (Transmission), viru-
lence of disease (Virulence), and frequency of recurrence of
disease (Cycle). Mean numbers of infected rabbits (�standard
error) for each disease type are shown.

High (Fig. 8a) and Mixed (Fig. 8b) virulence
disease both produced greater crashes than Low
(Fig. 8c) virulence, but with low virulence a sec-
ond crash occurs within the 20 years. A biennial
cycle of disease also produces a second crash, but
with a greater interval between the crashes. This
appears to be a function of density dependence of
the disease: the disease will only produce a crash
once the population has reached a certain level.
Low virulence produces a lower crash, so the
population returns to the critical size much more
quickly. Likewise, when the disease occurs in a
biennial cycle, the population recovers more
quickly. Mixed and High virulence disease, on the
other hand, slows down the recovery. Even when
the between-squares probability of transmission
does not allow a crash, the disease does have a
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Fig. 8. Effect of disease transmissibility in Regional Model: (a) annual cycle of disease, mixed virulence; (b) annual cycle of disease,
high virulence; (c) annual cycle of disease, low virulence; (d) biennial cycle of disease, mixed virulence.

the splitting of the model population into squares
like this does impose some artificiality on the
system. Of course, real rabbit populations are
unlikely to be continuous and homogenous over
an area of 25 km2, which is why the system of
grid-squares was adopted. This allows the model
to simulate a system of sub-populations, repre-
senting a series of habitat patches, for example.
Interactions within a patch would be relatively
homogeneous, but interactions between patches
would be limited.

3. Discussion

The overriding factor in considering the perfor-
mance of the models is the lack of concrete data
on the epidemiology of RVHD in European wild
rabbits. This means that the results produced by
the models cannot be extensively tested against
known data. However, the underlying assump-
tions and limitations of the models and the effect
of these on the validity and scope of the models
can be discussed.
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The individual-based Spatial Model produced a
reasonably accurate simulation of rabbit popula-
tion dynamics. However, there were some simplifi-
cations in the representation of rabbit dynamics.
Mortality rates were constant throughout the
year, except when extra mortality was used. The
probability of natural mortality was not affected
by infection with the disease. RVHD was consid-
ered to have been less likely than myxomatosis to
affect this probability. Rabbits with myxomatosis
have considerably altered behavior and are handi-
capped by impairment of vision, hearing and
smell. Rabbits with RVHD do not show such a
drastic alteration of behavior except in the very
latest stages of the disease, which may last only a
few hours. Rabbits with myxomatosis may there-
fore die from causes other than the disease (i.e.
predation, starvation), while rabbits with RVHD
are more likely to die from the disease itself. This
is, therefore, included in the additional mortality
due to disease.

Breeding was of fixed duration, although varia-
tion in annual reproduction could be modeled in
different runs by providing different parameters.
The age of the rabbits had no effect on breeding
success, which is not the case in the real world. It
is relatively easy to make the probability of preg-
nancy a function of age, as the age of each rabbit
is known. Likewise, juvenile rabbits were pre-
vented from breeding by setting the age at which
juveniles became adults to 7 months. In fact, in
Australia there are data that suggest that female
rabbits are capable, under ideal conditions, of
breeding from about 4 or 5 months, so young
born early in the year could produce young of
their own in the same season they were born
(Gilbert et al., 1987). In the Spatial Model, this
was not incorporated, as it is not common in
Europe (Bell and Webb, 1991), so the number of
young born in 1 year were related only to the
number of individuals that were present at the
start of the simulation. These assumptions sim-
plified the program, but were unlikely to have a
major effect on the results. Furthermore, these
assumptions could be avoided by relatively
straightforward additions to the program code.
Such changes might marginally increase the run-
ning time of the program and the memory
required.

Another limitation of the model was in the
representation of movement and interaction be-
tween rabbits. Basically, each rabbit would be
present in 1 square in 1 day, and would interact
with all other animals in that square on the same
day. This effectively splits the model on each day
into a number of subsets. These subsets of rabbits
are mutually exclusive, and all rabbits in a subset
share the same set of interacting rabbits. Clearly
this does not describe the pattern of interactions
which real rabbits would experience. However,
this method did allow rabbits to interact with
different individuals on each day, and did provide
a means for controlling the spread of disease.
Again, with some changes in the program code, a
better representation of interactions could be
achieved.

As far as the representation of disease was
concerned, the model provided a reasonable simu-
lation of the known processes of RVHD. There
were two main limitations of the Spatial Model.
Firstly, the only means of transmission was direct
contact between infected and susceptible rabbits,
but in fact, in real populations indirect means of
transmission are also possible (see Asgari et al.,
1998).

Secondly, the disease was represented by a sin-
gle strain, but with different rabbits reacting dif-
ferently to it, according to some predefined
probabilities. The probability of death is not cor-
related with either the means of infection, or the
virus titer, both of which have been shown to
affect the course of disease (Mitro and Krauss,
1993). Both of these features could be incorpo-
rated into the model with relative ease. Other
transmission modes (insect vectors, humans and
animals) could be introduced to move the disease
between areas. Separate strains of the virus, which
produce different responses could also be mod-
eled, and individual rabbits could have a stochas-
tic response to these strains, based on e.g. the
amount of virus contracted.

The Spatial Model represents a relatively small
area and a small rabbit population. This was due
to the large processing requirements involved in
this type of simulation. However, recent advances
in programming software and hardware mean
that larger models will be possible in the future.
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In particular, parallel processing will allow a
much larger model to be developed. This means
that the Spatial Model could be increased in scale
to approach that of the Regional Model, which
would greatly increase its value.

The principal problem involved in the Regional
Model is the representation of age/sex/disease
classes. Time since infection, for example, could
not be simulated with one class for infected rab-
bits. This meant that the full range of disease
scenarios used in the Spatial Model could not be
investigated without splitting the infected group
into further sub-classes.

The other main limitation of the Regional
Model was the replication of the model over the
spatial grid. Each system of equations is taken to
represent an area of 0.25 km2, or 25 ha (i.e. just
over four times the area of the Spatial Model);
these equations were then replicated over a 10×
10 grid. This grid can be seen as a series of habitat
patches each with its own system of population
and dynamics. Although the carrying capacity of
each grid-square could be altered, the underlying
dynamics (mortality, fecundity etc.) could not be
changed. This could have been altered either by
supplying different parameters for each grid-
square, or by allowing stochastic variation in
these parameters between squares.

The separation of the area into grid-squares
does pose some problems, as discussed above.
This lies chiefly in the parameter which controls
the transmission of the disease between grid-
squares; it is difficult to assess whether the values
used for this parameter reflect the real world
situation. This parameter expressed as a probabil-
ity, shows up one of the main disadvantages of
the Regional Model. The between-squares proba-
bility of transmission of disease could be defined
as the probability of infected rabbits from 1
square coming into contact with susceptible rab-
bits in another square, or as the probability of an
external agent carrying the disease across a square
boundary. Both of these definitions depend on
factors which are not explicitly included in the
model: in the first case, the factors are the dis-
tance between squares, and the amount of move-
ment between squares, which are not covered
elsewhere, whilst in the latter case, the factor is,

by definition, external. In the Spatial Model, these
factors can be explicitly modeled; it would be
more difficult to do so for the Regional Model.

Furthermore, the difference between the be-
tween-squares probability of transmission and the
within-square probability of transmission lies in
the scope of their actions. For each grid-square,
the within-square probability determines the out-
come of disease. For the whole area between-
square probability is more important. Individual
populations may crash completely due to the dis-
ease spreading throughout that square, but unless
the between-squares probability crosses some
threshold (0.4), the disease will not spread to all
the squares in the area. Thus the spread of disease
in the Regional Model is dependent on a factor
which is not satisfactorily defined.

With the Spatial Model, the probability of
transmission of the disease between rabbits would
be the same across the whole area. The spread of
the disease would be determined by the actual
distance between groups of rabbits and by the
movements of other agents, both of which could
be modeled and controlled explicitly. This would
provide a more realistic simulation of the disease,
and would allow assessment of the relative impor-
tance of direct and indirect sources of transmis-
sion of the disease.

The results of this study suggest that while
traditional analytical models of RVHD may
provide a certain theoretical insight into the be-
havior of the disease in wild rabbit populations,
IBMs have many advantages, which make them
more useful. The IBM described here will, how-
ever, have to be developed in a number of respects
for full utilization of those advantages. Changing
the way that rabbits are located in space can
incorporate better representation of movement
and interaction. For example, each rabbit has a
set of other rabbits with which it interacts, and
this set will not necessarily be the same for any
other rabbit. Interactions could be further influ-
enced both by the age/sex class and the domi-
nance status of the rabbit. Other ways in which
the Spatial Model can be improved are in the
representation of breeding behavior, further sepa-
ration of natural mortality causes, larger scale and
separation of the virus into strains. As discussed
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above, these changes can all be incorporated with
straightforward alterations to the program code.
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