IUCN / SSC Cat Specialist Group - Digital Cat Library
   

 

View printer friendly
Hudson, P.E.; Corr, S.A.; Payne-Davis, R.C.; Clancy, S.N.; Lane, E.; Wilson, A.M.
Functional anatomy of the cheetah (_Acinonyx jubatus_) hindlimb
2011  Journal of Anatomy (218): 363-374

The cheetah is capable of a top speed of 29 ms)1 compared to the maximum speed of 17 ms)1 achieved by theracing greyhound. In this study of the hindlimb and in the accompanying paper on the forelimb we have quanti-fied the musculoskeletal anatomy of the cheetah and greyhound and compared them to identify any differencesthat may account for this variation in their locomotor abilities. Specifically, bone length, mass and mid-shaftdiameter were measured, along with muscle mass, fascicle lengths, pennation angles and moment arms to enableestimates of maximal isometric force, joint torques and joint rotational velocities to be calculated. Surprisingly thecheetahs had a smaller volume of hip extensor musculature than the greyhounds, and we therefore propose thatthe cheetah powers acceleration using its extensive back musculature. The cheetahs also had an extremely powerfulpsoas muscle which could help to resist the pitching moments around the hip associated with fast accelerations.The hindlimb bones were proportionally longer and heavier, enabling the cheetah to take longer stridesand potentially resist higher peak limb forces. The cheetah therefore possesses several unique adaptations forhigh-speed locomotion and fast accelerations, when compared to the racing greyhound.Key words acinonyx; anatomy; cheetah; hindlimb; muscle; speed.

PDF files are only accessible to Friends of the Cat Group. Joining Friends of the Cat Group gives you unlimited access and downloads in the Cat SG Library for one year, and allows you to receive our newsletter Cat News (2 regular issues per year plus special issues). More information how to join here

 

(c) IUCN/SSC Cat Specialist Group ( IUCN - The World Conservation Union)